首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4257篇
  免费   410篇
  国内免费   339篇
化学   294篇
晶体学   26篇
力学   2834篇
综合类   59篇
数学   481篇
物理学   1312篇
  2024年   9篇
  2023年   41篇
  2022年   108篇
  2021年   85篇
  2020年   140篇
  2019年   105篇
  2018年   95篇
  2017年   163篇
  2016年   201篇
  2015年   149篇
  2014年   215篇
  2013年   219篇
  2012年   202篇
  2011年   261篇
  2010年   186篇
  2009年   202篇
  2008年   200篇
  2007年   245篇
  2006年   227篇
  2005年   217篇
  2004年   225篇
  2003年   206篇
  2002年   144篇
  2001年   142篇
  2000年   122篇
  1999年   117篇
  1998年   127篇
  1997年   87篇
  1996年   73篇
  1995年   69篇
  1994年   61篇
  1993年   57篇
  1992年   55篇
  1991年   57篇
  1990年   42篇
  1989年   39篇
  1988年   26篇
  1987年   8篇
  1986年   10篇
  1985年   13篇
  1984年   5篇
  1983年   3篇
  1982年   12篇
  1981年   6篇
  1980年   4篇
  1979年   8篇
  1977年   2篇
  1975年   1篇
  1971年   4篇
  1957年   10篇
排序方式: 共有5006条查询结果,搜索用时 62 毫秒
31.
在地球中传播的地震波主要有体波和表面波,而表面波中Rayleigh波对建筑物造成的破坏最为强烈。针对Rayleigh波的振动控制,提出一种田字形超材料结构。相比于传统的地震超材料,这种超材料屏障是由外部口字形框体内部嵌套十字形柱体组成,形成4个可填充区域,其外部框体采用部分埋入的方式,具有高强度、强稳定性、填充方式灵活的特点。应用有限元法计算了田字形超材料的能带结构和传输特性,并通过分析带隙边界处模态振型可知,带隙的打开是由于柱体的局域共振。结合带隙机理可知,柱体结构中土壤填充量不同可改变柱体的质量,形成不同的谐振频率,产生甚低频带隙。为进一步拓宽带隙,设计研究了正、负梯度的质量填充方式,均可得到3.3~13.1 Hz甚低频宽带隙,在谐振频率范围内两者的隔震方式分别为Rayleigh波彩虹捕获和Rayleigh波到体波的转化。最后,采用EI-Centro地震波对填充屏障进行了时程验证,加速度最大幅值衰减超过80%,为地震超材料在减震隔震方面应用提供了新的设计思路和方法。  相似文献   
32.
Ultrasound has been proven to enhance the mass transfer process and impact the fabrication of anodic aluminum oxide (AAO). However, the different effects of ultrasound propagating in different media make the specific target and process of ultrasound in AAO remain unclear, and the effects of ultrasound on AAO reported in previous studies are contradictory. These uncertainties have greatly limited the application of ultrasonic-assisted anodization (UAA) in practice. In this study, the bubble desorption and mass transfer enhancement effects were decoupled based on an anodizing system with focused ultrasound, such that the dual effects of ultrasound on different targets were distinguished. The results showed that ultrasound has the dual effects on AAO fabrication. Specifically, ultrasound focused on the anode has a nanopore-expansion effect on AAO, leading to a 12.24 % improvement in fabrication efficiency. This was attributed to the promotion of interfacial ion migration through ultrasonic-induced high-frequency vibrational bubble desorption. However, AAO nanopores were observed to shrink when ultrasound was focused on the electrolyte, accompanied by a 25.85 % reduction in fabrication efficiency. The effects of ultrasound on mass transfer through jet cavitation appeared to be the reason for this phenomenon. This study resolved the paradoxical phenomena of UAA in previous studies and is expected to guide AAO application in electrochemistry and surface treatments.  相似文献   
33.
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.  相似文献   
34.
Ultrasonic-assisted metal droplet deposition (UAMDD) is currently considered a promising technology in droplet-based 3D printing due to its capability to change the wetting and spreading behaviors at the droplet-substrate interface. However, the involved contact dynamics during impacting droplet deposition, particularly the complex physical interaction and metallurgical reaction of induced wetting-spreading-solidification by the external energy, remain unclear to date, which hinders the quantitative prediction and regulation of the microstructures and bonding property of the UAMDD bumps. Here, the wettability of the impacting metal droplet ejected by a piezoelectric micro-jet device (PMJD) on non-wetting and wetting ultrasonic vibration substrates is studied, and the corresponding spreading diameter, contact angle, and bonding strength are also discussed. For the non-wetting substrate, the wettability of the droplet can be significantly increased due to the extrusion of the vibration substrate and the momentum transfer layer at the droplet-substrate interface. And the wettability of the droplet on a wetting substrate is increased at a lower vibration amplitude, which is driven by the momentum transfer layer and the capillary waves at the liquid–vapor interface. Moreover, the effects of the ultrasonic amplitude on the droplet spreading are studied under the resonant frequency of 18.2–18.4 kHz. Compared to deposit droplets on a static substrate, such UAMDD has 31% and 2.1% increments in the spreading diameters for the non-wetting and wetting systems, and the corresponding adhesion tangential forces are increased by 3.85 and 5.59 times.  相似文献   
35.
Photocatalysis technology has been proved to be a potential strategy for removal of organic dyes, however high-power light sources are generally necessary to initiate photocatalytic reaction. In this work, we employed an excellent photocatalyst of Bi2WO6 with visible light harvest and meanwhile an intrinsic ferroelectricity, which realized the efficient degradation of organic dye via the synergetic photopiezocatalysis. Through coupling the illumination by a low-power (9 W) LED and the ultrasonic vibration (120 W) by an ultrasonic cleaner, the nanoflower-like Bi2WO6 composed of ultrathin nanosheets showed a much more enhanced photopiezocatalysis performance for purification of organic dye than the individual photocatalysis and piezocatalysis. Furthermore, the high mineralization efficiency and the good durability of the Bi2WO6 catalyst were demonstrated. The possible mechanism of photopiezocatalysis was finally proposed, where the ultrasound-induced piezoelectric field in Bi2WO6 drove photo-generated electrons and holes to diffuse along opposite directions, consequently promoting the separation efficiency of charge carriers. This work indicates that the synergetic photopiezocatalysis by coupling irradiation and ultrasonic vibration is a promising strategy to purify organic pollutants in wastewater.  相似文献   
36.
37.
An accurate potential energy surface of sulfur dioxide, SO2, in its ground electronic state has been determined from ab initio calculations using the coupled‐cluster approach in conjunction with the correlation‐consistent basis sets up to septuple‐zeta quality. The results obtained with the conventional and explicitly correlated coupled‐cluster methods are compared. The role of the core–electron correlation, higher‐order valence–electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO2 molecule is discussed. The vibration‐rotation energy levels of the 32SO2 and 34SO2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the “spectroscopic” accuracy. © 2017 Wiley Periodicals, Inc.  相似文献   
38.
In this article, we derive error estimates for the semi-discrete and fully discrete Galerkin approximations of a general linear second-order hyperbolic partial differential equation with general damping (which includes boundary damping). The results can be applied to a variety of cases (e.g. vibrating systems of linked elastic bodies). The results generalize pioneering work of Dupont and complement a recent article by Basson and Van Rensburg.  相似文献   
39.
Analytical solutions, with unique research value, can serve as benchmarks for empirical formulas and numerical methods, a tool for rapid parameter analysis and optimization, and a theoretical basis for experimental designs. Conventional analytical methods, e.g., the Lévy solution method, are only applicable to mechanical problems of plates and shells with opposite simply-supported edges, which, however, may fail to obtain analytical solutions for the issues with complex boundary constraints. In recent years, the finite integral transform method for plate and shell problems was developed to deal with non-Lévy-type plates and shells, but it is still infeasible to solve the mixed boundary constrains-induced complex boundary value problems of higher-order partial differential equations. Herein, for the first time, the finite integral transform method was combined with the sub-domain decomposition technique to solve the free vibrations of rectangular thin plates with mixed boundary constraints. The rectangular plate was first divided into 2 sub-domains according to the mixed boundary constraints, and the 2 sub-domains were solved analytically with the finite integral transform method. Finally, the continuity conditions were introduced to obtain the analytical solution of the original problem. Based on the side spot-welded cantilever plates commonly used in engineering, the free vibration problem of a rectangular thin plate with 1 edge subjected to clamped-simply supported constraints and the other 3 edges free, was analyzed. The obtained natural frequencies and mode shapes are in good agreement with those from the finite element method as well as the solutions in literature, thus verifying the accuracy of the proposed method. The solution procedure of the finite integral transform method can be implemented based on the governing equations without any assumption of the solution form. Therefore, this strict analytical method is widely applicable to complex boundary value problems of higher-order partial differential equations for such mechanical problems of plates and shells. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   
40.
茶叶是大众青睐的健康饮品之一,但茶叶在机器采收和加工过程中,容易混入茶梗和昆虫异物,污染茶叶、影响其质量安全,是未来应防范和检测的重点。X射线成像技术,根据食品基质和异物的密度差实施检测,广泛适用于金属异物并延伸至高密度塑料,但对于茶梗、昆虫这类低密度有机异物尚不适用,所以迫切需要研发新型无损检测技术和方法。针对片状茶叶重叠、遮掩异物的问题,提出了电磁振动上料辅助近红外光谱和荧光图像的检测方案,进行绿茶中的内源性异物茶梗和外源性异物昆虫的在线检测研究。通过电磁振动上料辅助近红外光谱和荧光成像系统,采集了600~1 050 nm范围的近红外光谱600条和RGB-N四通道图像各65幅。采用451条光谱进行建模,其余149条光谱作为预测集,评估模型的性能,比较了去趋势(Detrending)、多元散射校正(MSC)、标准正态变换(SNV)、变权重正态变换(VSN)、迭代自适应加权惩罚最小二乘法(airPLS)、不对称最小二乘法(ALS)、光程估计与校正(OPLEC)等不同光谱预处理方法的处理效果,其中OPLEC能较好地消除散射效应,偏最小二乘判别分析(PLS-DA)模型的正确识别率由78%提...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号